Donaciones 15 de septiembre 2024 – 1 de octubre 2024 Acerca de la recaudación de fondos

ReRAM-based Machine Learning (Computing and Networks)

ReRAM-based Machine Learning (Computing and Networks)

Hao Yu, Leibin Ni, Sai Manoj Pudukotai Dinakarrao
0 / 4.5
0 comments
¿Qué tanto le ha gustado este libro?
¿De qué calidad es el archivo descargado?
Descargue el libro para evaluar su calidad
¿Cuál es la calidad de los archivos descargados?

The transition towards exascale computing has resulted in major transformations in computing paradigms. The need to analyze and respond to such large amounts of data sets has led to the adoption of machine learning (ML) and deep learning (DL) methods in a wide range of applications.

One of the major challenges is the fetching of data from computing memory and writing it back without experiencing a memory-wall bottleneck. To address such concerns, in-memory computing (IMC) and supporting frameworks have been introduced. In-memory computing methods have ultra-low power and high-density embedded storage. Resistive Random-Access Memory (ReRAM) technology seems the most promising IMC solution due to its minimized leakage power, reduced power consumption and smaller hardware footprint, as well as its compatibility with CMOS technology, which is widely used in industry.

In this book, the authors introduce ReRAM techniques for performing distributed computing using IMC accelerators, present ReRAM-based IMC architectures that can perform computations of ML and data-intensive applications, as well as strategies to map ML designs onto hardware accelerators.

The book serves as a bridge between researchers in the computing domain (algorithm designers for ML and DL) and computing hardware designers.

Año:
2021
Editorial:
The Institution of Engineering and Technology
Idioma:
english
Páginas:
261
ISBN 10:
1839530812
ISBN 13:
9781839530814
Archivo:
EPUB, 7.63 MB
IPFS:
CID , CID Blake2b
english, 2021
Leer en línea
Conversión a en curso
La conversión a ha fallado

Términos más frecuentes